Микроклиматом производственных помещений называется. V. Микроклимат производственных помещений. Температура в помещении

Оборудование для магазина 17.09.2019
Оборудование для магазина

V. МИКРОКЛИМАТ ПРОИЗВОДСТВЕННЫХ ПОМЕЩЕНИЙ

1. Параметры микроклимата и их измерение

Условия микроклимата в производственных помещениях зависят от ряда факторов:

    климатического пояса и сезона года;

    характера технологического процесса и вида используемого оборудования;

    условий воздухообмена;

    размеров помещения;

    числа работающих людей и т.п.

Микроклимат в производственном помещении может меняться на протяжении всего рабочего дня, быть различным на отдельных участках одного и того же цеха.

В производственных условиях характерно суммарное (сочетанное) действие параметров микроклимата : температуры, влажности, скорости движения воздуха .

В соответствии с СанПиН 2.2.4.548 – 96 «Гигиенические требования к микроклимату производственных помещений» параметрами, характеризующими микроклимат являются:

    температура воздуха ;

    температура поверхностей (учитывается температура поверхностей ограждающихконструкций (стены, потолок, пол), устройств (экраны и т.п.), а также технологического оборудования или ограждающих его устройств);

    относительная влажность воздуха ;

    скорость движения воздуха ;

    интенсивность теплового облучения .

Температура воздуха , измеряемая в 0 С, является одним из основных параметров, характеризующих тепловое состояние микроклимата. Температура поверхностей и интенсивность теплового облучения учитываются только при наличии соответствующих источников тепловыделений.

Влажность воздуха - содержание в воздухе водяного пара. Различают абсолютную, максимальную и относительную влажность.

Абсолютная влажность (А) - упругость водяных паров, находящихся в момент исследования в воздухе, выраженная в мм ртутного столба, или массовое количество водяных паров, находящихся в 1 м 3 воздуха, выражаемое в граммах.

Максимальная влажность (F) - упругость или масса водяных паров, которые могут насытить 1 м 3 воздуха при данной температуре.

Относительная влажность (R) -это отношение абсолютной влажности к максимальной, выраженное в процентах.

Скорость движения воздуха измеряется в м/с.

Измерение параметров микроклимата.

В обычных условиях для измерения температуры воздуха используются термометры (ртутные или спиртовые), термографы (регистрирующие изменение температуры за определенное время) и сухие термометры психрометров.

Для определения влажности воздуха применяются переносные аспирационные психрометры (Ассмана), реже стационарные психрометры (Августа) и гигрометры. При использовании психрометров дополнительно измеряют атмосферное давление с помощью барометров – анероидов.

Скорость движения воздуха измеряется крыльчатыми и чашечными анемометрами.

Рассмотрим примеры приборов, традиционно используемых для измерения параметров микроклимата.

Аспирационный психрометр МВ-4М

Аспирационный психрометр МВ - 4М предназначен для определения относительной влажности воздуха в диапазоне от 10 до 100 % при температуре от -30 до +50 0 С. Цена деления шкал термометров не более 0,2 0 С. Принцип его работы основан на разности показаний сухого и смоченного термометров в зависимости от влажности окружающего воздуха. Он состоит из двух одинаковых ртутных термометров, резервуары которых помещены в металлические трубки защиты. Эти трубки соединены с воздухопроводными трубками, на верхнем конце которых укреплен аспирационный блок с крыльчаткой, заводимой ключом и предназначенной для прогона воздуха через трубки с целью сделать более интенсивным испарение воды со смоченного термометра.

Анемометр крыльчатый АСО-3

Крыльчатый анемометр применяется для измерения скоростей движения воздуха в диапазоне от 0,3 до 5 м/с. Ветроприемником анемометра служит крыльчатка, насаженная на ось, один конец которой закреплен на неподвижной опоре, а второй через червячную передачу передает вращение редуктору счетного механизма. Его циферблат имеет три шкалы: тысяч, сотен и единиц. Включение и выключение механизма производится арретиром. Чувствительность прибора не более 0,2 м/с.

В последнее время для определения параметров микроклимата производственных помещений успешно применяются аналого-цифровые приборы.

Портативный измеритель влажности и температуры ИВТМ – 7

Прибор предназначен для измерения относительной влажности и температуры, а также для определения других температуро-влажностных характеристик воздуха. В качестве чувствительного элементаизмерителя температурыиспользуется пленочный терморезистор, выполненный из никеля. Чувствительным элементом измерителя относительной влажности является емкостной датчик с изменяющейся диэлектрической проницаемостью. Принцип работы прибора основан на преобразовании емкости датчика влажности и сопротивления датчика температуры в частоту с дальнейшей обработкой ее с помощью микроконтроллера. Микроконтроллер обрабатывает информацию, отображает ее на жидкокристалическом индикаторе и одновременно выдает с помощью интерфейса RS – 232на компьютер.

Анемометр Testo – 415

Прибор предназначен для измерения скорости воздуха и температуры в помещениях. Информация отображается на большом двухстрочном дисплее. Прибор имеет возможность усреднения результатов измерений по времени и числу замеров.

Микроклимат производственных помещений - это климат внутренней среды этих помещений, который определяется действующими на организм человека сочетаниями температуры, влажности и скорости движения воздуха, а также температуры окружающих поверхностей.

Оптимальные и допустимые параметры микроклимата в Республики Беларусь в зависимости от характеристики производственных помещений, периода года, категории тяжести работы и условий рабочего места устанавливают Санитарные правила и нормы (сокращенно: СанПиН 9-80-98). Данные правила распространяются на показатели микроклимата на рабочих местах всех видов производственных помещении и являются обязательными для всех предприятий и организаций.

В соответствии с Законом Республики Беларусь "О санитарно-эпидемическом благополучии населения" на предприятиях и в организациях должен осуществляться производственный контроль за соблюдением требований Санитарных правил и проведением профилактических мероприятий, направленных на предупреждение возникновения заболеваний работающих в производственных помещениях, а также контроль за соблюдением условий труда и отдыха и выполнением мер коллективной и индивидуальной защиты работающих от неблагоприятного воздействия микроклимата. Руководители предприятий, организаций и учреждений вне зависимости от форм собственности и подчиненности обязаны привести рабочие места в соответствие с требованиями к микроклимату, предусмотренными СанПиНом.

Итак, показателями, характеризующими микроклимат в производственных помещениях, являются: температура воздуха- (Высокая температура воздуха способствует быстрой утомляемости работающего, может привести к перегреву организма, тепловому удару. Низкая температура воздуха может вызвать местное или общее охлаждение организма, стать причиной простудного заболевания либо обморожения.); температура поверхностей – (Если в производственном помещении находятся различные источники тепла, температура которых превышает температуру человеческого тела, то тепло от них самопроизвольно переходит к менее нагретому телу, т.е. человеку. При вычислении данной температуры учитывается температура поверхностей ограждающих конструкций (стены, потолок, пол), устройств (экраны и т.п.), а также технологического оборудования или ограждающих устройств), относительная влажность воздуха – (Она оказывает значительное влияние на терморегуляцию организма человека. Высокая относительная влажность (отношение содержания водяных паров в 1 м3 воздуха к их максимально возможному содержанию в этом же объёме) при высокой температуре воздуха способствует перегреванию организма, при низкой же температуре она усиливает теплоотдачу с поверхности кожи, что ведёт к переохлаждению организма. Низкая влажность вызывает пересыхание слизистых оболочек путей работающего), скорость движения воздуха – (Подвижность воздуха эффективно способствует теплоотдаче организма человека и положительно проявляется при высоких температурах, но отрицательно низких.); интенсивность теплового облучения (При систематических перегревах организма человека отмечается повышенная восприимчивость его к простудным заболеваниям. Таким образом, тепловое излучение воздействует на организм человека, нарушая его нормальную деятельность, вызывая серьезные осложнения).



В вышеназванном НПА приводятся 2 основных показателя состояния микроклимата: и . Оптимальные микроклиматические условия обеспечивают общее и локальное ощущение теплового комфорта в течение 8-часовой рабочей смены при минимальном напряжении механизмов терморегуляции, которые не вызывают отклонений в состоянии здоровья, а создают предпосылки для высокого уровня работоспособности и являются предпочтительными на рабочих местах. Их необходимо соблюдать на рабочих местах производственных помещений, на которых выполняются работы операторского типа, связанные с нервно-эмоциональным напряжением (в кабинах, на пультах и постах управления технологическими процессами, в залах вычислительной техники и др.). Перечень других рабочих мест и видов работ, при которых должны обеспечиваться оптимальные величины микроклимата определяются Санитарными правилами по отдельным отраслям промышленности и другими документами, согласованными с органами Государственного санитарного надзора в установленном порядке. Для тех производств, на которые не распространяются специальные требования законодательства, предусмотрены допустимые микроклиматические условия , которые не вызывают повреждений или нарушений состояния здоровья, но могут приводить к возникновению общих и локальных ощущений теплового дискомфорта, напряжению механизмов терморегуляции, ухудшению самочувствия и понижению работоспособности. Допустимые величины показателей микроклимата на рабочих местах должны соответствовать значениям, приведенным в СанПиНе. Так, перепад температуры воздуха по высоте должен быть не более 3 °С, При температуре воздуха на рабочих местах 25 °С и выше максимально допустимые величины относительной влажности воздуха не должны выходить за пределы: 70 % - при температуре воздуха 25 °С; 65 % - при температуре воздуха 26 °С; 60 % - при температуре воздуха 27 °С; 55 % - при температуре воздуха 28 °С, температура наружных поверхностей технологического оборудования, ограждающих устройств, с которыми соприкасается в процессе работы исполнитель, не должна превышать 45 °С.

Государственный надзор и контроль за выполнением Санитарных правил осуществляется органами и учреждениями Государственного санитарного надзора Республики Беларусь.

ВЕНТИЛЯЦИЯ

Наиболее важное значение для профилактики профессиональных заболеваний и нормализации воздушной среды имеет вентиляция.

Вентиля́ция (от лат. ventilatio - проветривание) - обмен воздуха в помещении для удаления избытков теплоты, влаги, вредных и других веществ с целью обеспечения допустимых параметров микроклимата и чистоты воздуха, т.е удаление отработанного воздуха из помещения и замена его наружным. В необходимых случаях при этом проводится кондиционирование воздуха: очищение от пыли и дыма, подогрев или охлаждение, увлажнение или осушение, ионизация и т. д. Вентиляция создаёт условия воздушной среды, благоприятные для здоровья и самочувствия человека, отвечающие требованиям санитарных норм, технологических процессов, строительных конструкций зданий, технологий хранения и т. д.

Данный вопрос регламентируется Строительными нормами Республики Беларусь «Отопление, вентиляция и кондиционирование помещений». Сокращенно СНБ 4.02.01-03.

По способу перемещения воздуха, вентиляция может быть как естественной , так и с механическим побуждением , возможно также сочетание этих двух способов. 1)При естественной вентиляции воздух перемещается за счёт разности температур в помещении и наружного воздуха, а также в результате действия ветра. Данный тип вентиляции может быть организованным и неорганизованным. Под неорганизованной естественной системой вентиляции понимается воздухообмен в помещении, происходящий за счет разности давлений внутреннего и наружного воздуха и действий ветра через неплотности ограждающих конструкций, а также при помощи форточек, фрамуг и дверей, открываемых без всякой системы. Организованной же естественной вентиляцией называется воздухообмен, происходящий за счет разности давлений внутреннего и наружного воздуха, но через специально устроенные приточные и вытяжные проемы, степень открытия которых регулируется. 2)При механической вентиляции воздухообмен происходит за счет разности давления, создаваемой вентилятором или эжектором.(Эжектор устанавливается, когда в удаляемых выбросах содержится, например, пыль, способная взрываться не только от удара, но и от трения, а также если присутствуют взрывоопасные газы или пары. При помощи эжектора транспортируемая среда не соприкасается с рабочим местом вентилятора). Механическая вентиляция более эффективна, так как воздух предварительно может быть очищен от пыли и доведен до требуемой температуры и влажности.

По способу организации воздухообмена выделяют 1) Общеобменную вентиляцию . Данный тип вентиляции предусматривается для создания одинаковых условий и параметров воздушной среды (температуры, влажности и подвижности воздуха) во всём объёме помещения, главным образом в его рабочей зоне (1,5-2,0 м от пола), когда вредные вещества распространяются по всему объёму помещения и нет возможности (или нет необходимости) их уловить в месте образования. Такая вентиляция обеспечивает необходимые параметры микроклимата и снижение концентрации вредных веществ до допустимых значений во всем объеме производственного помещения. 2) Местная вентиляция . Местной вентиляцией называется такая, при которой воздух подают на определённые места (местная приточная вентиляция) и загрязнённый воздух удаляют только от мест образования вредных выделений (местная вытяжная вентиляция). Местная приточная вентиляция может обеспечивать приток чистого воздуха (предварительно очищенного и подогретого) к определённым местам. И наоборот, местная вытяжная вентиляция удаляет воздух от определённых мест с наибольшей концентрацией вредных примесей в воздухе. Примером такой местной вытяжной вентиляции может быть вытяжка на кухне, которая устанавливается над газовой или электрической плитой. Чаще всего используются такие системы в промышленности.

3) Аварийная вентиляция. Аварийная система вентиляции устанавливается в производственных помещениях, где возможен неожиданный выброс чрезвычайно опасных вредных веществ в количествах, значительно превышающих ПДК, с целью их быстрого удаления. Аварийная вентиляция может быть только вытяжной для предотвращения перетока вредных или взрывоопасных веществ в соседние помещения. 4) Противодымная вентиляция . Противодымная система вентиляции устанавливается в производственных зданиях, где применяются технологии с повышенной пожароопасностью, и служит для обеспечения эвакуации людей. С помощью этой системы подается необходимое количество воздуха, препятствующего распространению дыма в помещении. Система работает в начальной стадии пожара.5) комбинированная система вентиляции. Она устанавливается в том случае, когда все выделяющиеся вредные вещества невозможно удалить местными вытяжными устройствами.

Для перемещения воздуха внутри помещения используются различного рода вентиляторы. Системы же вентиляции включают в себя группы самого разнообразного оборудования: прежде всего, это вентиляторы, вентиляторные агрегаты или вентиляционные установки. Среди дополнительного оборудования - шумоглушители, воздушные фильтры, электрические и водяные воздухонагреватели, регулирующие и воздухораспределительные устройства и прочее.

Для очистки приточного воздуха, а в некоторых случаях и вытяжного воздуха используются воздушные фильтры . Существует множество типов конструкций воздушных фильтров. Принцип действия, конструкция и материал фильра зависят от требуемых параметров воздуха. В вентиляционных системах воздушные фильтры классифицируются по степени очистки воздуха. Чем меньше частички пыли, эффективно улавливыемые фильтром, тем выше его класс очистки. Помимо класса очистки, важными параметрами фильтров являются их пылеемкость и аэродинамическое сопротивление.

В современных зданиях система вентиляции, как правило, работает совместно с системой отопления здания, а в некоторых случаях полностью её заменяет. Для подогрева воздуха в вентиляционных системах используются воздухонагреватели. Большинство воздухонагревателей в вентиляционных системах - водяные либо электрические. Водяные воздухонагреватели это по сути теплообменники, в которых воздух получает тепло от горячей воды, нагретой в отопительном котле или поступающей из центральной теплосети. Электрические воздухонагреватели питаются от электросети и преобразуют электрическую энергию в тепловую.

Установка в систему вентиляции шумоглушителей является одной из эффективных мер по снижению аэродинамического шума в воздушном потоке.

Для защиты людей от переохлаждения в холодное время года в дверных проёмах и воротах устраивают воздушные и воздушно-тепловые завесы . Принцип их работы основан на том, что под углом к холодному воздушному потоку, поступающему в помещение, направлен воздушный поток (комнатной температуры или подогретый) который либо снижает скорость и изменяет направление холодного потока, уменьшая вероятность возникновения сквозняков в производственном помещении, либо подогревает холодный поток (в случае воздушно-тепловой завесы).

В настоящие время для поддержания для требуемых параметров микроклимата широко применяют установки для кондиционирования воздуха (кондиционирования). Кондиционированием воздуха называется создание и автоматическое поддержание в производственных или бытовых помещениях независимо от внешних метеорологических условий постоянных или изменяющихся по определённой программе температуры, влажности, чистоты и скорости движения воздуха, сочетания которых создаёт комфортные условия труда или требуется для нормального протекания технологического процесса. Кондиционер - это автоматизированная вентиляционная установка, поддерживающая в помещении заданные параметры микроклимата.

С конкретными нормативами, формулами для расчета тех или иных показателей можно ознакомиться в Строительных нормах Республики Беларусь «Отопление, вентиляция и кондиционирование помещений»

Одним из необходимых условий нормальной жизнедеятельности человека является обеспечение в помещениях нормальных метеорологических условий, оказывающих существенное влияние на тепловое самочувствие человека.

Метеорологические условия в производственных помещениях, или их микроклимат , зависят от теплофизических особенностей технологического процесса, климата, сезона года, условий вентиляции и отопления.

Под микроклиматом производственных помещений понимается климат окружающей человека внутренней среды этих помещений, который определяется действующими на организм человека сочетаниями температуры, влажности и скорости движения воздуха, а также температуры окружающих его поверхностей.

Перечисленные параметры – каждый в отдельности и в совокупности – оказывают влияние на работоспособность человека, его здоровье.

Человек постоянно находится в процессе теплового взаимодействия с окружающей средой. Для нормального течения физиологических процессов в организме человека необходимо, чтобы выделяемое организмом тепло отводилось в окружающую среду. Когда это условие соблюдается, наступают условия комфорта и у человека не ощущается беспокоящих его тепловых ощущений - холода или перегрева.

1. Параметры микроклимата и их измерение

Условия микроклимата в производственных помещениях зависят от ряда факторов:

    климатического пояса и сезона года;

    характера технологического процесса и вида используемого оборудования;

    условий воздухообмена;

    размеров помещения;

    числа работающих людей и т.п.

Микроклимат в производственном помещении может меняться на протяжении всего рабочего дня, быть различным на отдельных участках одного и того же цеха.

В производственных условиях характерно суммарное (сочетанное) действие параметров микроклимата : температуры, влажности, скорости движения воздуха .

В соответствии с СанПиН 2.2.4.548 – 96 «Гигиенические требования к микроклимату производственных помещений» параметрами, характеризующими микроклимат являются:

    температура воздуха ;

    температура поверхностей (учитывается температура поверхностей ограждающих конструкций (стены, потолок, пол), устройств (экраны и т.п.), а также технологического оборудования или ограждающих его устройств);

    относительная влажность воздуха ;

    скорость движения воздуха ;

    интенсивность теплового облучения .

Температура воздуха , измеряемая в 0 С, является одним из основных параметров, характеризующих тепловое состояние микроклимата. Температура поверхностей и интенсивность теплового облучения учитываются только при наличии соответствующих источников тепловыделений.

Влажность воздуха - содержание в воздухе водяного пара. Различают абсолютную, максимальную и относительную влажность.

Абсолютная влажность (А) - упругость водяных паров, находящихся в момент исследования в воздухе, выраженная в мм ртутного столба, или массовое количество водяных паров, находящихся в 1 м 3 воздуха, выражаемое в граммах.

Максимальная влажность (F) - упругость или масса водяных паров, которые могут насытить 1 м 3 воздуха при данной температуре.

Относительная влажность (R) - это отношение абсолютной влажности к максимальной, выраженное в процентах.

Скорость движения воздуха измеряется в м/с.

Измерение параметров микроклимата.

В обычных условиях для измерения температуры воздуха используются термометры (ртутные или спиртовые), термографы (регистрирующие изменение температуры за определенное время) и сухие термометры психрометров.

Для определения влажности воздуха применяются переносные аспирационные психрометры (Ассмана), реже стационарные психрометры (Августа) и гигрометры. При использовании психрометров дополнительно измеряют атмосферное давление с помощью барометров – анероидов.

Скорость движения воздуха измеряется крыльчатыми и чашечными анемометрами.

Рассмотрим примеры приборов, традиционно используемых для измерения параметров микроклимата.

Аспирационный психрометр МВ-4М

Аспирационный психрометр МВ - 4М предназначен для определения относительной влажности воздуха в диапазоне от 10 до 100 % при температуре от -30 до +50 0 С. Цена деления шкал термометров не более 0,2 0 С. Принцип его работы основан на разности показаний сухого и смоченного термометров в зависимости от влажности окружающего воздуха. Он состоит из двух одинаковых ртутных термометров, резервуары которых помещены в металлические трубки защиты. Эти трубки соединены с воздухопроводными трубками, на верхнем конце которых укреплен аспирационный блок с крыльчаткой, заводимой ключом и предназначенной для прогона воздуха через трубки с целью сделать более интенсивным испарение воды со смоченного термометра.

Анемометр крыльчатый АСО-3

Крыльчатый анемометр применяется для измерения скоростей движения воздуха в диапазоне от 0,3 до 5 м/с. Ветроприемником анемометра служит крыльчатка, насаженная на ось, один конец которой закреплен на неподвижной опоре, а второй через червячную передачу передает вращение редуктору счетного механизма. Его циферблат имеет три шкалы: тысяч, сотен и единиц. Включение и выключение механизма производится арретиром. Чувствительность прибора не более 0,2 м/с.

В последнее время для определения параметров микроклимата производственных помещений успешно применяются аналого-цифровые приборы.

Портативный измеритель влажности и температуры ИВТМ – 7

Прибор предназначен для измерения относительной влажности и температуры, а также для определения других температуро-влажностных характеристик воздуха. В качестве чувствительного элемента измерителя температуры используется пленочный терморезистор, выполненный из никеля. Чувствительным элементом измерителя относительной влажности является емкостной датчик с изменяющейся диэлектрической проницаемостью. Принцип работы прибора основан на преобразовании емкости датчика влажности и сопротивления датчика температуры в частоту с дальнейшей обработкой ее с помощью микроконтроллера. Микроконтроллер обрабатывает информацию, отображает ее на жидкокристалическом индикаторе и одновременно выдает с помощью интерфейса RS – 232 на компьютер.

Анемометр Testo – 415

Прибор предназначен для измерения скорости воздуха и температуры в помещениях. Информация отображается на большом двухстрочном дисплее. Прибор имеет возможность усреднения результатов измерений по времени и числу замеров.

  • 4. Закон толерантности
  • Раздел II. Управление безопасностью жизнедеятельности
  • Тема 4. Управление безопасностью жизнедеятельности План
  • 1. Обеспечение безопасности жизнедеятельности
  • 2. Основные законодательные акты и нормативные документы
  • 3. Надзор и контроль за соблюдением законодательства о труде и о безопасности труда.
  • 3. Стандартизация в области безопасности труда
  • 4. Расследование и учет несчастных случаев
  • 5. Эффективность мероприятий по обеспечению безопасности на производстве
  • 7. Принципы построения и функционирования системы управления безопасностью труда
  • Тема 3. Единая государственная система предупреждения и ликвидации последствий чрезвычайных ситуаций (рсчс) и гражданской обороны (го) План
  • 1. Единая государственная система предупреждения и ликвидации последствий чрезвычайных ситуаций (рсчс)
  • 2. Гражданская оборона (го), её роль и место в Российской Федерации.
  • 2.2 Понятия го
  • 2.3 Организация и ведение го.
  • 3. Основы государственной политики в го. Принципы организации ведения го
  • 4. Степени готовности го и их краткая характеристика
  • Раздел III. Основы физиологии труда и комфортные условия жизни
  • Тема 4.Основы физиологии труда и комфортные условия жизни План
  • 1. Анализаторы человеческого организма.
  • 2. 1 Виды деятельности человека
  • 2.2 Физический и умственный труд
  • 2.3 Физиологические изменения в организме при работе
  • 3. Понятие микроклимата, его параметры.
  • 3.1 Общие требования к параметрам микроклимата
  • 3.2 Терморегуляция организма
  • 3.3 Методы и приборы измерения параметров микроклимата
  • Аспирационный психрометр
  • Дистанционный психрометр
  • Крыльчатый анемометр -
  • Термоанемометр по своей сути является акустическим прибором, то есть использует определение характеристик звука (а именно скорость звука), а затем эту информацию преобразует в нужный сигнал.
  • 5. Общие санитарно - технические требования к производственным помещениям и рабочим местам
  • 6. Приемы и способы создания комфортных условий для работы в производственных помещениях.
  • 7. Порядок организации оптимального освещения рабочих мест, способы определения качества естественного освещения и коэффициента освещенности
  • Раздел IV. Воздействие на человека вредных и опасных факторов среды обитания
  • 1.2 Повседневные абиотические факторы
  • 1.3 Литосферные опасности
  • 1.3.1 Землетрясение
  • 1.3.2 Сели
  • 1.3.3 Снежные лавины
  • 1.3.4 Извержение вулканов
  • 1.3.5 Оползни
  • 1.4 Гидросферные опасности
  • 1.4.1 Наводнения
  • 1.4.2 Цунами
  • 1.5 Атмосферные опасности
  • 1.6 Космические опасности
  • 1.2 Природные пожары
  • 1.2.1 Понятие «пожар» и «пожарная безопасность».
  • 1.2.2 Причины возникновения пожаров.
  • 1.2.3 Лесные пожары в России.
  • Лесные пожары - одна из серьезнейших проблем российских лесов.
  • 1.2.4 Приемы и средства ликвидации последствий лесных пожаров.
  • 1.3. Массовые заболевания. Правила поведения населения при проведении изоляционно - ограничительных мероприятий
  • 3.1 Массовые заболевания
  • 1.3.2 Противоэпидемические и санитарно-гигиенические мероприятия в очаге бактериального заражения
  • 1.3.3 Правила поведения населения при проведении изоляционно - ограничительных мероприятий
  • 2. Техногенные опасности.
  • 2.1 Вредные вещества.
  • 2.1.1 Показатели токсичности химических веществ
  • 4.1.2 Факторы, определяющие токсическое действие химических веществ
  • 2.1.3 Гигиеническое регламентирование химических факторов среды обитания
  • 2.1.4 Классификация промышленных ядов по характеру действия на организм человека
  • 2.1.5. Комбинированное действие промышленных ядов
  • 2.1.6 Пути поступления ядов в организм
  • 2.1.7. Распределение ядов в организме, превращение и выведение
  • 2.1.8. Оценка реальной опасности химических веществ
  • 2.1.9. Защита от воздействия вредных веществ
  • 2.2 Вибрация
  • 2.3 Акустический шум
  • 2.3.1 Акустические загрязнения
  • 2.4 Инфразвук
  • 2.4.1 Инфразвук в нашем повсевдневном окружении
  • 2.4.2 Технотронные методики
  • 2.4.3 Исследования медиков в области влияния на человека инфразвука.
  • 2.4.4 Некоторые меры борьбы с инфразвуком
  • 2.5 Электромагнитные поля и излучения
  • 2.5.1 Воздействие электромагнитных полей
  • 2.5.2 Воздействие электромагнитного излучения
  • 2.6 Лазерное излучение
  • 2.7 Электрический ток
  • 2.7.1 Условия существования электрического тока
  • 2.7.2 Основы электробезопасности
  • 2.8 Механическое воздействие
  • 2.8.1 Классификация и характеристика чрезвычайных ситуаций техногенного характера.
  • 3.Защита и действия населения
  • 3.1 Мероприятия по защите населения
  • 3.1.1 Оповещение
  • 3.1.2 Эвакуационные мероприятия
  • 3.1.3 Укрытие населения в защитных сооружениях
  • 3.2 Медицинские мероприятия по защите населения
  • Тема 8. Основы социальной, медицинской и пожарной безопасности План
  • 1. Виды социальных опасностей проживания человека в городских условиях
  • 2. Виды психического воздействия на человека и защита от них
  • 2.1 Защита от опасностей, связанных с физическим насилием
  • 2.1.1 Насилие над детьми
  • 2.1.2 Суицид
  • 2.1.3 Сексуальное насилие
  • 2.2 Психическое состояние человека, его безопасность.
  • 2.2.1 Определение психических состояний
  • 2.2.2 Типичные положительные психические состояния человека
  • 2.2.3 Отрицательные психические состояния
  • 2.2.4 Персеверация и ригидность
  • 2.2.5 Основы информационной безопасности
  • 2.2.4 Меры защиты: четыре уровня защиты
  • 2.3 Основы информационной безопасности
  • 2.3.1 Информационная безопасность
  • 2.3.2 Меры защиты информационной безопасности
  • 3. Оказание первой доврачебной помощи
  • 3.1. Оказание первой помощи
  • 3.1.2 Искусственное дыхание и непрямой массаж сердца
  • 3.1.3 Остановка кровотечения
  • 3.1.4 Наиболее распространенные виды травм, их симптомы и оказание первой помощи
  • 3.1.5 Оказание первой доврачебной помощи при переломах, вывихах, ушибах и растяжении связок
  • 3.1.5 Оказание первой доврачебной помощи при химических отравлениях
  • 3.1.6 Оказание первой доврачебной помощи при поражении электрическим током
  • 3.1.7 Учреждения, оказывающие первую медицинскую помощь
  • 4. Основы пожарной безопасности
  • 4.1 Основные нормативные документы, регламентирующие требования пожарной безопасности
  • 4.2 Организационные противопожарные мероприятия по обеспечению пожарной безопасности в зданиях и помещениях с массовым пребыванием людей
  • 4.3.Первичные средства пожаротушения
  • 4.3.1 Огнетушащие свойства воды
  • 4.3.2 К первичным средствам пожаротушения относятся:
  • 4.3.3 Огнетушители
  • 4.3.4 Оказание доврачебной помощи при пожаре
  • Раздел V. Безопасность населения и территорий в чрезвычайных ситуациях
  • 1. Транспортные аварии
  • 2.Внезапное обрушение сооружений и зданий
  • 2. Чрезвычайные ситуации природного характера
  • Природные пожары.
  • 3. Возможный характер будущей войны
  • 4. Понятие оружия массового поражения.
  • 4.1 Ядерное оружие
  • 4.2 Химическое оружие
  • 4.3 Бактериологическое (биологическое) оружие
  • 5. Основные способы защиты населения
  • 6. Основы организации аварийно-спасательных работ при ликвидации последствий чрезвычайных обстоятельств
  • Раздел VI. Экстремальные ситуации криминального характера
  • Тема 10. Основы безопасности жизнедеятельности в городских условиях План
  • 1. Общая классификация опасностей (признаки и виды).
  • 3. Естественные опасности
  • 4. Техногенные опасности
  • 5. Антропогенные опасности
  • 6. Система обеспечения безопасности
  • Тема 11. Основы личной безопасности от преступлений террористического характера План
  • Терроризм и его виды
  • 1.2. Формы терроризма
  • 1.2.1 Меры защиты при проведении террористических актов
  • 1.2.2 Угон воздушного судна и иное преступное вмешательство в деятельность гражданской авиации
  • 1.2.3 Захват и угон морского судна, и иное преступное вмешательство в деятельность международного судоходства
  • 1.2.4 Захват заложников
  • Необходимо усвоить следующие правила:
  • 1.2.5 Иные формы терроризма
  • 1.2.6 Причины терроризма
  • 2. Нападение на особо опасные объекты.
  • 2.1 Категория опасных объектов
  • 2.2 Обеспечение антитеррористической защищенности промышленных объектов и объектов инфраструктуры
  • 3. Понятие микроклимата, его параметры.

    Микроклимат производственных помещений - это микроклиматические условия производственной среды (температура, влажность, давление, скорость движения воздуха, тепловое излучение) помещений, которые оказывают влияние на тепловую стабильность организма человека в процессе труда.

    Исследования показали, что человек может жить при атмосферном давлении 560-950 мм ртутного столба. Атмосферное давление на уровне моря 760 мм ртутного столба. При данном давлении человек испытывает комфортность. Как повышение, так и понижение атмосферного давления на большинство людей оказывает негативное влияние. С понижением давления ниже 700 мм ртутного столба наступает кислородное голодание, что сказывается на работе головного мозга и центральной нервной системы.

    3.1 Общие требования к параметрам микроклимата

    Параметры микроклимата в соответствии с ГОСТ 12.1.005-88 и СанПиН 2.2.4. 548-96 должны обеспечивать сохранение теплового баланса человека с окружающей производственной средой и поддержание оптимального или до пустимого теплового состояния организма.

    Параметрами, характеризующими микроклимат в производственных помещениях, являются:

    Температура воздуха, t˚C

    Температура поверхностей (стен, потолка, пола, ограждений оборудования и т.п.), tп ˚C

    Относительная влажность воздуха, W %

    Скорость движения воздуха, V м/с

    Интенсивность теплового облучения, P Вт/м 2

    Абсолютная влажность А – это количество водяных паров, содержащихся в 1 м3. воздуха. Максимальная влажность F max – количество водяных паров (в кг), которое полностью насыщает 1 м3 воздуха при данной температуре (упругость водяных паров).

    Относительная влажность – это отношение абсолютной влажности к максимальной влажности, выраженной в процентах:

    Когда воздух полностью насыщен водяными парами, то есть A=Fmax (во время тумана), относительная влажность воздуха φ =100%.

    На организм человека и условия его работы оказывает влияние также средняя температура всех поверхностей, ограничивающих помещение, она имеет важное гигиеническое значение.

    Другим важным параметром является скорость движения воздуха. При повышенной температуре скорость воздуха способствует охлаждению, а при низких температурах переохлаждению, поэтому она должна быть ограниченной, в зависимости от температурной среды.

    Санитарно - гигиенические, метеорологические и микроклиматические условия не только влияют на состояние организма, но и определяют организацию труда, то есть, продолжительность и периодичность отдыха работника и обогрева помещения.

    Таким образом, санитарно-гигиенические параметры воздуха рабочей зоны могут быть физически опасными и вредными производственными факторами, оказывающими существенное влияние на технико-экономические показатели производства.

    3.2 Терморегуляция организма

    Одним из необходимых условий нормальной жизнедеятельности человека является обеспечение нормальных метеорологических условий в помещениях, оказывающих большое влияние на тепловое самочувствие человека. Метеорологические условия, или микроклимат, зависят от теплофизических особенностей технологического процесса, местного климата, сезона года, условий отопления (в холодный период года) и вентиляции в помещениях.

    Трудовая деятельность человека сопровождается непрерывным выделением теплоты в окружающую среду. Её количество зависит от степени физического напряжения в определённых климатических условиях и составляет от 85 Вт (в состоянии покоя) до 500 Вт (при тяжёлой работе). Для того, чтобы физиологические процессы в организме протекали нормально, выделяемая организмом теплота должна полностью отводиться в окружающую среду. Нарушение теплового баланса может привести к перегреву, либо к переохлаждению организма и, как следствие, к потере работоспособности, быстрой утомляемости, потере сознания, к несчастным случаям и профзаболеваниям.

    Нормальное тепловое самочувствие имеет место, когда тепловыделения человека Qтч полностью воспринимаются окружающей средой Qтс, т.е. когда имеет место тепловом баланс Qтч = Qтс, то в этом случае температура внутренних органов остаётся постоянной 36, 5 ˚C.

    Если теплопродукция организма не может быть полностью передана окружающей среде (Qтч>Qтс), происходит рост температуры внутренних органов и такое тепловое самочувствие характеризуется понятием жарко . Теплоизоляция человека (например, в тёплой и плотной одежде), находящегося в состоянии покоя (сидя или лёжа) от окружающей среды, приведёт к повышению его температуры уже через 1 час на 1,2˚C. А то же самое при выполнении работы средней тяжести, вызовет повышение температуры на 5 ˚C, т.е. приблизится к критической (+43˚C) температуре.

    В случае, когда окружающая среда воспринимает больше теплоты, чем её вырабатывает человек (Qтчхолодно .

    Терморегуляция организма - физиологический процесс поддержания температуры тела в границах от 36,6 до 37,2°С. Основной путь поддержания равновесия - теплоотдача.

    Теплоотдача идёт следующими путями:

    1 . Излучение тепла (Q изл) телом человека по отношению к окружающим поверхностям, имеющим меньшую температуру. Это основной путь отдачи тепла в производственных условиях. Излучением отдают тепло все тела, имеющие температуру выше абсолютного нуля - 273°С. Человек отдаёт тепло, когда температура окружающих его предметов ниже температуры наружных слоёв одежды (27 - 28°С) или открытой кожи.

    2. Проведение (Q п) - отдача тепла предметам, непосредственно соприкасающемся с телом человека.

    3. Конвекция (Q к) - передача тепла через воздушную среду. Человек нагревает вокруг себя слой воздуха толщиной 4 - 8 мм путём проведения тепла. Нагрев более отдалённых слоёв идёт за счёт естественного и принудительного замещения прилегающих к телу более тёплых слоёв воздуха более холодными. При подвижном воздухе теплоотдача увеличивается в несколько раз.

    4. Испарение воды с поверхности кожи и слизистой оболочки верхних дыхательных путей (Q ис.)- основной путь отдачи тепла при повышенной температуре воздуха, особенно, когда затрудняется или прекращается отдача излучением или конвекцией. В обычных условиях испарение идет в результате неощутимого потоотделения на большей части поверхности тела в результате диффузии воды без активного участия потовых желёз. В целом организм теряет 0,6 л воды в сутки. При выполнении физической работы в условиях повышенной температуры воздуха идёт повышенное потоотделение, при котором количество теряемой жидкости 10 - 12 л за смену. Если пот не успел испариться, он покрывает кожу влажным слоем, что не способствует отдаче тепла, и создаются условия для перегрева организма. В этом случае идёт потеря воды и солей. Это приводит к обезвоживанию организма, потере минеральных солей и водо-растворимых витаминов (С, В1, В2). Такие потери влаги приводят к сгущению крови, нарушению солевого обмена.

    При тяжёлой работе в условиях повышенной температуры воздуха теряется 30 - 40 г соли NaCl (всего в организме 140 г NaCl). Дальнейшая потеря солей вызывает мышечные спазмы, судороги.

    5. Тепловое (инфракрасное) излучение. В условиях производства может присутствовать тепловое (инфракрасное) излучение - невидимое электромагнитное излучение. Источник - любое нагретое тело.

    В зависимости от длины волны оно делится на коротковолновое, средневолновое, длинноволновое. Проходя через воздух эти лучи его не нагревают, но, поглотившись твёрдым телом, лучистая энергия переходит в тепловую.

    Особенности действия лучистого тепла зависят от длины волны инфракрасного излучения. Длинные волны (1,4 - 10 мкм) поглощаются слоем кожи, вызывая калящий эффект. Короткие волны проникают глубоко внутрь организма, нагревая внутренние органы, мозг, кровь. Длительное воздействие повышенной температуры в сочетании с большой влажностью может привести к перегреванию организма. При этом у человека возникает головная боль, тошнота, сердцебиение, общая слабость, рвота, потоотделение, частое дыхание, тахикардия. При работе на воздухе, в результате облучения головы инфракрасными лучами коротковолнового диапазона, происходит тяжелое поражение мозговой ткани вплоть до выраженного менингита и энцефалита. В тяжелых случаях наблюдаются судороги, бред, потеря сознания. При этом температура тела остается нормальной или повышается незначительно.

    Нормальный теплообмен (т.е. тепловой комфорт) образуется тогда, когда

    Q тч=Q к + Q т + Q изл + Q исп + Q в = Q тс

    При значительном превышении теплопродукции организма человека (Qтч»Qтс) возникает перегрев (гипертермия), угрожающая жизни и здоровью человека; при значительном уменьшении теплопродукции организма по сравнению с поглотительными возможностями среды, возникает переохлаждение (гипотермия), опасное для здоровья и жизни человека.

    В условиях теплового гомеостаза баланс тепла в организме гомойотермов описывается выражением:

    ΔQ = M - E ± C ± R ± K ± W = 0

    где ΔQ - изменения теплосодержания; М - продукция тепла, а остальные члены уравнения - отдача тепла организмом во внешнюю среду различными путями. В условиях температурного комфорта ΔQ = 0.

    Здесь сразу же необходимо оговорить то существенное современное понимание гомеостаза, в соответствии с которым любой его вид, в том числе и тепловой гомеостаз, выражается не в жесткой фиксации тех или иных показателей на определенном уровне, а скорее в их колебании вокруг среднего значения. Это принципиальное соображение, по крайней мере для человека, подтверждается еще и фактически - феноменом крайней нестабильности теплового обмена тела человека.

    О. Бартон и А. Эдхолм (1957) указывают, что даже при кратковременных исследованиях в специальных климатических камерах со строгим контролем метеорологических условий и состояния исследуемых термостабильное состояние не достигается на протяжении нескольких часов. Выражение 1 есть полное уравнение теплового баланса, но эволюционно - биологическое значение его составляющих далеко не одинаково. Так, продукция тепла в организме (М) генетически не обусловлена тепловым обменом, а является следствием коренных процессов, характеризующих жизнедеятельность. Живой организм характеризуется непрерывным обменом веществ и энергии, который происходит в соответствии с известным уравнением термодинамики:

    ΔН = ΔZ + TΔS

    где ΔН - изменение энтальпии - меры общего запаса химически превращаемой энергии; ΔZ - изменение термодинамического потенциала или свободной энергии - части энтальпии системы, которая может быть с пользой использована для совершения работы; ΔS - изменения энтропии (термодинамической) для данных условий - меры неопределенности системы, зависящей от действия межмолекулярных сил и теплового движения и измеряемой величиной рассеяния потенциальной энергии химических веществ в виде тепла; Т - °К (градусы Кельвина).

    Источником теплопродукции (М), таким образом, служат процессы обмена веществ и энергии, непрерывно совершающиеся в организме. В ходе расщепления энергетических материалов энергия, кумулируемая в макроэргических соединениях, может рассеиваться в виде тепла ("первичная теплота"), либо превращаться в те или иные виды работы, в конечном счете также переходящие в тепловую энергию. Однако основное тепло организм получает в результате осуществления тех или иных видов работы (70% теплопродукции), в то время как теплорассеяние составляет лишь 30%.

    Таблица 3. 1. Потребление кислорода различными органами взрослого человека массой 63 кг (Bord Р., 1961)

    Потребление кислорода различными органами взрослого человека массой 63 кг (Bord Р., 1961)

    Орган

    Масса, кг

    Артериовенозная разница по кислороду, см 3

    Потребление кислорода

    абсолютное, см 3 /мин

    относительное

    см 3 /(мин·100 г)

    % от общего

    Скелетные мышцы

    Другие части тела

    Тело в целом

    Для проблемы регуляции теплового обмена существенный интерес представляют источники продукции тепла в покое и при мышечной работе. Образование тепла неразрывно связано с энергетическим обменом. В условиях нормальной жизнедятельности в покое о величине теплопродукции можно судить по интенсивности окислительных процессов (потреблению кислорода). Соответствующие данные приведены в табл. 3.1

    В покое наиболее высокий вклад в теплопродукцию (58,8%) обеспечивается печенью, мозгом и скелетными мышцами. При этом в первых двух органах высоки и относительные показатели энергетического обмена (артериовенозная разница по кислороду и его относительное потребление органом); в то же время интенсивность обмена в покоящихся мышцах невелика и валовое значение их теплопродукции определяется просто значительной массой мышечпой ткани.

    Структура энергозатрат в тканях (Иванов К. П., 1972) показывает, что из 1600 ккал/сут (в условиях основного обмена) около 900 ккал улавливается в форме макроэргических связей АТФ, 215 ккал идет на поддержание неравновесных ионных концентраций по обе стороны клеточных мембран, 415 ккал обеспечивает процессы обновления белков, липидов и полисахаридов, и лишь 270 ккал затрачивается на сокращение сердечной мышцы и дыхательных мышц. Вместе с тем все эти процессы характеризуются низкими величинами КПД, например синтез белка имеет КПД 10-13%, транспорт ионов - 20%, синтез АТФ - 50% и т. д. Таким образом, происходит накопление "первичного" и "вторичного" тепла.

    При совершении мышечной работы энергетический обмен в мышцах резко возрастает, о чем можно судить и по такому косвенному показателю, как величина минутного объема крови, протекающей через мышцы в покое и при их сокращении: в первом случае она равна 840 мл/мин, а во втором - 12 500 мл/мин, что указывает на повышение потребления кислорода мышцами по крайней мере в 5 раз. Таким образом, увеличение теплопродукции при мышечной работе обусловлено повышенным образованием тепла в первую очередь в ткани скелетных мышц. Однако следует учитывать еще и адекватное возрастание энергетических процессов (и теплопродукции) в органах, обеспечивающих мышечную работу - в головном и спинном мозге, сердце, дыхательных мышцах, в печени и других органах.

    В условиях термического комфорта важнейшее значение в термогенезе имеют произвольные мышечные движения, потому что именно к ним, как гениально заметил И. М. Сеченов (1863), сводится "все бесконечное разнообразие внешних проявлений мозговой деятельности". Измерения энерготрат при "обыденных" двигательных актах человека показывают их различную (иногда и значительную) термогенетическую стоимость (Кандрор И. С., 1968).

    В зависимости от поведения человека даже на протяжении нескольких часов сдвиги теплопродукции могут носить характер быстрых и значительных пиков.

    Параметры микроклимата регламентируются с учётом тяжести физического труда и времени года.

    Изменение параметров микроклимата вызывает изменение соотношения величин теплопродукции Q. Так, при нормальных условиях во время лёгкой физической работы доля Qк+ Qтсоставляет около 30 % всей теплоотдачи, Qизл около 45 %, Qисп=20 % и Qв=5 %.

    Чем выше температура окружающих предметов, тем меньше теплоотдача излучением. При повышении температуры окружающего воздуха до температуры тела человека и выше, эффективность теплоотдачи теплопроводностью Qт, конвекциейQ ки излучением Qизл уменьшается и решающее значение приобретает отвод тепла путём испарения влаги (пота) с поверхности тела Qисп. Но интенсивность испарения влаги с поверхности тела человека зависит от относительной влажности Wи скорости движения окружающего воздухаV.

    При Wболее 75 % процесс испарения влаги резко замедляется, а при W=100 % прекращается полностью. Вместе с этим замедляется, а затем и прекращается теплоотдача Qисп. При повышении влажности пот не испаряется, а стекает каплями с поверхности кожного покрова. Возникает так называемое «проливное» потоотделение, изнуряющее организм и не создаёт необходимую теплоотдачу. Происходит обезвоживание организма, которое влечёт за собой нарушение остроты зрения и умственной деятельности. Потеря влаги на 15-20% приводит к смертельному исходу.

    Недостаточная влажность (<20%) также оказывает неблагоприятное воздействие на организм, вследствие интенсивного испарения влаги со слизистых оболочек, их пересыхания, растрескивания и кровотечения.

    Увеличение скорости воздуха υ всегда приводит к увеличению теплоотдачи в окружающую среду.

    При лёгкой работе разрешается более высокая температура и меньшая скорость движения воздуха.

    В тёплый период года (при температуре вне помещения +10°С и выше) температура в производственном помещении должна быть не более +28°С при лёгкой работе и не более +26°С при тяжёлой работе. Если вне помещения температура более +25°С, то в помещении допускается повышение температуры до +33°С.

    Согласно ДСН 3.3.6 042-99 «Санитарные нормы микроклимата производственных помещений», по степени влияния на тепловое состояние организма человека, микроклиматические условия подразделяются на оптимальные и допустимые. Для рабочей зоны производственных помещений устанавливаются оптимальные и допустимые микроклиматические условия с учетом тяжести выполняемой работы и периода года (табл.3.2).

    Оптимальные микроклиматические условия - это такие условия микроклимата, которые при длительном и систематическом влиянии на человека обеспечивают сохранение теплового состояния организма без активной работы терморегуляции. Они сохраняют обеспечение самочувствие теплового комфорта и создание высокого уровня производительности труда (табл. 3.2.).

    Допустимые микроклиматические условия, которые при длительном и систематическом влиянии на человека могут вызвать изменения теплового состояния организма, но нормализуются и сопровождаются напряженной работой механизмов терморегуляции в границах физиологической адаптации (табл. 3.2.). При этом не возникает нарушений или ухудшения состояния здоровья, но наблюдается дискомфортное тепловосприятие, ухудшение самочувствия и снижение работоспособности.

    Условия микроклимата, выходящие за допустимые границы называются критическими и ведут, как правило, к серьезным нарушениям в состоянии организма человека.

    Оптимальные условия микроклимата создаются для постоянных рабочих мест.

    Таблица 3. 2

    Оптимальные величины температуры, относительной влажности и скорости движения воздуха в рабочей зоне производственных помещений.

    Период года

    Температура воздуха, 0 С

    Относительная влажность, %

    Скорость движения, м/с

    Холодный период года

    Легкая I-а

    Легкая I-б

    Средней тяжести II-а

    Средней тяжести II-б

    Тяжелая III

    Теплый период года

    Легкая I-а

    Легкая I-б

    Средней тяжести II-а

    Средней тяжести II-б

    Тяжелая III

    Допустимые значения микроклиматических условий устанавливаются в случае, когда на рабочем месте не удается обеспечить оптимальные условия микроклимата согласно технологическим требованиям производства или экономической целесообразности.

    Перепад температуры воздуха по высоте рабочей зоны при обеспечении допустимых условий микроклимата не должна быть более 3-х градусов для всех категорий работ, а по горизонтали не должен выходить за пределы допустимых температур категорий работ.

    Внешняя среда, окружающая человека на производстве, влияет на организм человека, на его физиологические функции, психику, производительность труда.

    На показатели работоспособности и состояния здоровья любого работника постоянно производятся воздействия различных внешних и внутренних факторов. Большую роль в этом смысле играет микроклимат на производственных объектах.

    Микроклимат на производственных объект влияет на показатели работоспособности работников

    Температура, влажность, движение воздуха, пыль, другие элементы, содержащиеся в воздухе, излучения – всё это, во взаимодействии и сочетании, формирует климатический фон на рабочем месте человека. Он существенно разнится исходя из характера и отрасли производства. Микроклимат неразрывно связан с состоянием здоровья работающего человека. Болезни, нагрузки, профессиональные болячки оказывают существенное влияние на характер воздействия отдельных параметров микроклимата.

    Все климатические факторы должны детально учитываться при разработке конкретных требований к безопасности на рабочем месте и выполнении трудовой деятельности. Стоит детально разобрать этот непростой вопрос и выяснить, от чего зависит микроклимат производственных помещений, как он воздействует на человека и какие параметры его формируют.

    Понятие, виды климатических условий помещений

    Понятие рассматриваемого термина можно сформулировать следующим образом - это комплекс факторов внутренней среды помещения, оказывающий влияние на процессы, происходящие в организме работника.

    В перечень таких факторов входят следующие параметры:

    • Температура.
    • Влажность.
    • Концентрация пыли и других частиц.
    • Скорость воздушных потоков.
    • Характер термических и других видов излучений.
    • Тепловое выделение различных приборов и нагретых поверхностей.

    Все факторы, формирующие и влияющие на микроклимат, можно разделить на две большие группы: регулируемые и нерегулируемые. К регулируемым факторам относятся такие параметры, как: конструктивные особенности зданий и помещений, эффективность работы инженерных сетей (отопление, вентиляция), количество людей в помещении. Нерегулируемым фактором является климат местности, так как на него нельзя воздействовать. Решающее значение на климатический фон рабочего пространства оказывают регулируемые факторы.

    Определение и поддержание оптимальных характеристик климатических условий в замкнутом рабочем пространстве имеет большое значение, так как от этого зависит настроение, самочувствие, работоспособность, трудовая производительность и здоровье людей. Особенно это важно для производственных помещений, где человек часто проводит большое количество времени в небезопасных условиях. Ключевым понятием в вопросах микроклимата является тепловой баланс.

    Оптимальный тепловой баланс достигается благодаря соотношению процессов воспроизведения, восприятия и отдачи тепла. Оптимальный тепловой баланс позволяет обеспечить стабильное состояние работника при нахождении в конкретном помещении, когда все жизненно важные системы организма функционируют в штатном режиме без лишних нагрузок и давления.

    Выделяют три основных вида климатического фона в помещении:

    • Нейтральный.
    • Нагревающий.
    • Охлаждающий.

    Нейтральный фон климата оптимален для теплового баланса. Потеря тепла за 8-10 часов постоянного пребывания в помещении с таким фоном приводит к потере тепла за счёт испарения влаги в 30%.

    Охлаждающий фон приводит к состоянию организма, когда потеря тепла идёт быстрее, чем его принятие и восстановление самим человеком. Такой фон приводит к дефициту тепла и при постоянном воздействии на организм может привести к развитию заболеваний кожных покровов (ознобление, обморожение и т. д.), желудка (язва, гастрит), нервов спины (радикулит), дыхательной и сердечно-сосудистой систем (образование тромбов). Чем выше показатели охлаждающего фона, тем ниже работоспособность человека.

    Нагревающий фон климата в помещении характеризуется параллельным ростом накопления тепла в организме и увеличением потери его при испарении влаги (потери превышают 30%). Такой фон приводит к снижению производительности и работоспособности, возникновению головокружений, головной боли, слабости, тошноте. Нормализация состояния происходит при перемещении в прохладное помещение с нейтральным или понижающим фоном.

    По статистике, при повышающем фоне климата риск появления заболевания желудочно-кишечного тракта возрастает на 40%

    По статистике постоянная работа в помещениях с повышающим фоном приводит к общему увеличению заболеваемости работников в 1,5-2 раза, болезни органов дыхания и пищеварения развиваются чаще почти на 40%. Существенно повышается риск стремительного развития опасных сердечно-сосудистых заболеваний, зафиксирован более высокий уровень смертности от таких недугов. В возрасте после 45-50 лет у рабочих наблюдается ускорение процессов общего старения организма.

    Влажность, излучение, загрязнения воздуха

    Под влажностью при расчёте климатического фона понимается количество паров воды, которые содержатся в воздухе под влиянием определённого температурного режима. Уровень влажности оказывает существенное влияние на воздействие температурного режима микроклимата.

    Важным параметром оценки климатического фона является наличие различного рода излучений. Так, инфракрасное излучение на постоянной основе может оказать существенное влияние на состояние здоровья человека. Облучение длинноволновой радиацией приводит к местным поражениям, а коротковолновые воздействия грозят поражениями организма общего характера. Коротковолновая радиация приводит к повышению температуры внутренних тканей организма, что сказывается на состоянии многих систем и органов.

    Концентрация пыли и других компонентов зависит от конкретного вида производства, а также от эффективности работы вентиляции. Все вентиляционные системы можно разделить на два вида: естественные и искусственные. Искусственная вентиляция более эффективна для создания благоприятного микроклимата, так как обладает рядом преимуществ:

    • Возможность регулирования температуры, влажности, напора и интенсивности подачи воздуха.
    • Непрерывная работа, вне зависимости от внешних климатических факторов.
    • Точечная или сплошная подача и замена воздуха в зависимости от обстановки.

    Воздействие температуры

    Характерным проявлением нагревающего фона в помещении на производстве является тепловой удар. Каждый пятый человек с таким симптомом умирает, даже если он выявлен на начальной стадии развития.

    Повышенная смертность от тепловых ударов, в таких ситуациях, связана с тем, что у людей параллельно повышается предрасположенность к сердечно-сосудистым заболеваниям. Вероятность теплового удара выше у людей с весом выше нормы, а также у молодёжи в возрасте 18-22 года в процессе привыкания и акклиматизации к своеобразным условиям.

    Слабость — признак теплового удара

    Признаки теплового удара:

    • Изменение цвета кожи тела в сторону красного спектра. Она становится сухой и горячей.
    • Учащение и нарушение дыхания, появление одышки.
    • Нарушение работы желудка и кишечника, приводит к тошноте и рвоте.
    • Зрительные нарушения (потемнения, галлюцинации), головокружения, боли в голове.
    • Ослабление и учащение пульса.
    • Мышечные боли и спазмы.

    В тяжёлых стадиях тепловой удар приводит к потере сознания, повышенной возбуждённости и смерти.

    Ещё один важный показатель, который уязвим от климатического фона – тепловое состояние. Оно включает в себя следующие параметры:

    1. Температура кожных покровов и внутренних тканей.
    2. Общая температура тела.
    3. Уровень потерь влаги.
    4. Колебания частоты сердечных колебаний.

    При оценке микроклимата применяется следующая классификация теплового состояния:

    • Оптимальная.
    • Допустимая.
    • Предельно допустимая.
    • Недопустимая.

    Определение класса теплового состояния влияет на характер гигиенических требований к месту и производственному помещению, где выполняются трудовые обязанности.

    Климатический фон можно разделить на четыре вида:

    При оптимальном микроклимате работник может выполнять работу без вреда для здоровья около 10 часов

    • Оптимальный микроклимат помещений не оказывает никакого негативного влияния на протяжении 8-10 часов. Он характеризуется высокой работоспособностью.
    • Допустимый климат в рабочем пространстве означает наличие негативного влияния на работника и характеризуется постепенным «накоплением» негативных воздействий с течением времени. Такие условия могут приводить к временным снижениям эффективности выполнения функций, но на здоровье серьёзного воздействия не оказывают.
    • Вредный микроклимат характеризуется существенным воздействием на тепловое состояние человека, снижение работоспособности и отсутствием гарантий отсутствия негативного влияния на здоровье в последующем при постоянном нахождении в таком помещении. Характер вредности определяется интенсивностью и длительностью воздействия.
    • Опасный микроклимат подразумевает высокий уровень негативного воздействия на тепловое состояние и здоровье даже при краткосрочном пребывании в помещении (не более 60 минут). Он сопровождается наличием риска смерти.

    Влияние теплоотдачи на микроклимат

    Человек, находясь внутри определённого объекта, постоянно взаимодействует с климатическим режимом вокруг себя. Поэтому при рассмотрении климатического фона учитываются следующие параметры:

    • Терморегуляция.
    • Теплопроводность.
    • Конвекция (передача температуры внешним объектам).
    • Тепловое излучение.

    Терморегуляция осуществляется путём теплоотдачи. Этот процесс производится несколькими способами: теплопроводность через одежду, конвекция, излучение на окружающие предметы, испарения с кожных покровов, выдыхаемый воздух.

    Теплоотдача из организма осуществляется путём изменений в кровеносной системе под воздействием колебаний температур. При холоде – сосуды сужаются, снижается теплоотдача. При повышении термического режима – сосуды расширяются, повышается теплоотдача.

    Микроклиматические условия существенно влияют на степень поглощения энергии человеком для поддержания нормального состояния. Здесь ключевое значение играет параметр основного обмена. Этот параметр подразумевает величину обмена энергии при спокойном положении человека без действия, воздействия внешних и внутренних факторов, при нормальном и спокойном уровне обменных процессов.

    Показатели основного обмена зависят от возрастных, ростовых, весовых и половых факторов. Он зависит от состояния внутренних органов, комплексного характера воздействия извне на организм (питание, климат местности проживания).

    Мышечные нагрузки оказывают существенное влияние на обменные процессы, поэтому особо учитывается специфика трудовой деятельности. На основной обмен оказывает влияние характер положения тела человека при осуществлении трудовых функций (сидя, стоя, в движении, согнувшись и т. д.). В зависимости от этого меняется и уровень теплоотдачи.

    Меры по улучшению условий труда в условиях неблагоприятного климатического фона

    Когда микроклимат рабочего пространства невозможно улучшить за счёт внедрения технологий или обновления оборудования, принимаются меры по защите работников. Эти меры включают следующие действия:

    • Оборудование эффективных и мощных систем кондиционирования, вентиляции.
    • Обязательное применение нательных средств защиты от термических воздействий.
    • Строгая регламентация и соблюдение периодов работы и времени отдыха в благоприятных условиях.
    • Сокращение рабочего дня и смены.
    • Компьютаризация производственных процессов, управление ими дистанционно с помощью оборудования.
    • Оборудование рабочих мест дополнительной защитой от термического воздействия.
    • Регулирование системы отопления.
    • Оборудование вокруг источников тепла температурных экранов поглощения, отражения и отведения. Для решения этой задачи используются различные материалы: алюминий, сталь, кирпич, асбестовый картон, стекло, современные композитные материалы. Для охлаждения таких экранов применяется специальная система циркулирующей холодной воды.

    Регулирование и контроль микроклимата на объектах производства

    Нормативы климатического фона регламентированы нормами технических требований обеспечения безопасности на произвосдтве. Допустимые и минимальные параметры климатического фона определяются для различных отраслей промышленности и производства на основе всех вышеназванных факторов с учётом индивидуальных особенностей и деталей в каждом конкретном случае. Учитывается уровень и возможности акклиматизации, изменения в зависимости от времени года и т. д.

    На требования к параметрам микроклимата существенное влияние может оказывать степень психологических нагрузок, характер трудовой деятельности (физический или умственный труд). При высоких психических нагрузках и повышенной уязвимости требования по ряду факторов к климатическому фону должны снижаться.

    Все требования относятся к рабочему пространству. Под рабочей зоной понимается пространство, где осуществляет свои основные трудовые функции работник на протяжении рабочего дня, ограниченное высотой до 2 метров. Постоянным рабочим местом является пространство, где работник проводит более 50% всего совокупного рабочего времени. Если работник постоянно перемещается, то рабочей является вся, охватываемая его действиями, зона.

    Особые требования к микроклимату предъявляются на объектах животноводства, так как там помимо человеческого фактора присутствует фактор большого количества животных, расположенных в одном помещении.

    Рекомендуем почитать

    Наверх